

Image Diagnostic Technology Ltd

53 Windermere Road, London W5 4TJ Tel: +44 (0)20 8819 9158 www.idtscans.com email: info@idtscans.com

How CBCT Scanners are being used in practice

Anthony Reynolds

Image Diagnostic Technology Ltd 53 Windermere Road, London W5 4TJ Tel +44 (0)20 8819 9158 Email info@idtscans.com Web www.idtscans.com

Who or what is IDT?

Image Diagnostic Technology Ltd aka "IDT Scans"

Specialises in:

- arranging dental CT/CBCT scans
- 3D processing
- radiology reports
- implant simulation
- 3D models
- surgical drill guides

25,000 scans processed since 1991

FOV, kVp, mAs, DAP, DLP, Effective Dose stored in database for last 5000 scans

Outline of Presentation

- Introduction / Disclosure
- Analysis of Stored Data
- Interpretation of Results
- Why QA and Training are Important

	Sirona XG3D	i-CAT 17-19	Gendex CB-500	Carestream 9000 3D	Vatech PaX- Flex3D	NewTom VG	J.Morita Accuitomo 170	Planmeca Promax 3D
Min DAP	157	212	111	117	149	209	125	270
Avg DAP	304	346	358	361	410	536	663	752
Max DAP	563	947	589	708	1032	830	2170	1430
n=	34	217	548	63	105	31	497	26

Table 1A. Average DAP (mGy.cm2) retrieved from DICOM headers

www.idtscans.com

Dose Length Product (DLP)

DLP = CTDIvol x Irradiated Length

Effective Dose = DLP x F (where F is a conversion factor)

- most CBCT manufacturers don't display CTDIvol (exception: J.Morita, NewTom)
- CTDIvol = <u>Effective Dose</u>
 F x Irradiated Length
- Can use CTDIvol to interpolate published data

	Sirona XG3D	i-CAT 17-19	Gendex CB-500	Carestream 9000 3D	Vatech PaX- Flex3D	NewTom VG	J.Morita Accuitomo 170	Planmeca Promax 3D
Min E.D.	20	10	20	20	20	25	10	40
Avg E.D.	46	48	64	43	52	60	63	88
Max E.D.	95	145	120	115	105	100	195	165
n=	34	217	548	63	105	31	497	26

Table 1B. Effective Doses (μSv) interpolated from published data*

*Ludlow JB et al. Effective dose of dental CBCT – a meta analysis of published data and additional data for nine CBCT units. *Dentomaxillofac Radiol* 2015; 44; 20150197

www.idtscans.com

Interpretation

- Users prefer the higher dose settings
 - Some machines deliver better low dose images than others
 - QA is vital to ensure optimal performance at low dose
- Operator Training is very important
 - Operators do not have a good understanding of practical ways to reduce the radiation dose.

Principles of Radiation Protection

Justification

(benefits must outweigh the risks)

- Optimisation (keep doses As Low As Reasonably Achievable) Diagnostically Acceptable
- Dose Limits (1 mSv per year for members of the public) (no dose limits for medical exposures)

Want to Optimise

Benefit to Patient* Risk to Patient

* not to the dentist!

What is the Risk from a CBCT scan?

- Assume adult patient, dento-alveolar scan, both jaws
- Effective Dose might be 100 microSieverts
- Risk that patient might develop fatal cancer in 20 years time

= 5% (1 in 20) per Sievert (from ICRP103)

- = 1 in 20 million for 1 microSv
- = 100 in 20 million for 100 microSv
- = 1 in 200,000 (roughly) for 100 microSv

Health & Safety people would call this a "Minimal Risk"

* If your patient is a child the risk is 3x more

Dose Practical ways to Reduce the Risk

1. Reduce the Height (vertical collimation)

> Reduces the risk without loss of benefit in most cases.

Absorbed Dose outside primary beam is effectively zero

More ways to Reduce the Dose

- 2. Reduce the mAs (tube current, scan time)
 - Reducing the mAs may have a negative impact on image quality
 - On some scanners, the voxel size is linked to the mAs

3. Reduce the Width (horizontal collimation)

- Absorbed Dose outside primary beam is not zero (about 50% from SEDENTEXCT measurements)
- There may be some loss of benefit

Basic problem with Small Field Of View

- CBCT measures the density within the Field Of View only
- Material outside the Field Of View has an unpredictable effect

Air should be black

J.Morita Accuitomo

Variation of Effective Dose* with Field Width

*data interpolated from: Ludlow JB et al. Effective dose of dental CBCT – a meta analysis of published data and additional data for nine CBCT units. *Dentomaxillofac Radiol* 2015; 44; 20150197

Summary of ways to Reduce the Dose

1. Reduce the Height

- linear reduction in risk, no loss of benefit in most cases

2. Reduce the mAs

- linear reduction in risk, some loss of benefit

3. Reduce the Width

- less than linear reduction in risk, more loss of benefit

CBCT State of the Art (circa 2005)

i-CAT[™] is a trademark of Imaging Sciences International LLC of Hatfield, USA

CBCT State of the Art (circa 2015)

Gendex[™] is a trademark of Gendex Dental Systems of Lake Zurich, USA

A Brief History of Dental CBCT

- Technical aspects have not advanced significantly over the last 10 years
- We've lost the ability to collimate vertically
- Average doses have not decreased
- Machines have become much less expensive

The Best CBCT Scanner on the Market

Toshiba Aquilion ONE medical CT Scanner

320 detector rows

operates in cone beam mode

0.5s scan time

volume capture 24cm x 16cm max

Effective doses typical Mx 100µSv typical Mn 150µSv

Around £1M

Aquilion[™] is a trademark of Toshiba Medical Systems Corporation

Dental Protocols on medical CT Scanners

- Operator has more control over kVp, mAs, pitch than on a dental CBCT scanner.
- The dentoalveolar region has high natural contrast, so we can get away with a low radiation dose.
- Training is required to help operators choose a low dose protocol for dental CT scans.

	Toshiba Aquilion ONE	Siemens Definition AS	GE LIghtSpeed VCT	Siemens Sensation 64	Philips Brilliance 64	Toshiba Aquilion 64	Siemens Emotion 6
Min DLP	42	47	72	88	83	53	95
Avg DLP	60	112	123	123	138	147	155
Max DLP	90	238	242	170	242	295	228
n=	28	46	351	36	70	129	35

Table 2A. Average DLP (mGy.cm) retrieved from DICOM headers

www.idtscans.com

	Toshiba Aquilion ONE	Siemens Definition AS	GE LIghtSpeed VCT	Siemens Sensation 64	Philips Brilliance 64	Toshiba Aquilion 64	Siemens Emotion 6
Min E.D.	70	100	150	150	160	111	145
Avg E.D.	124	276	370	310	346	416	343
Max E.D.	200	550	750	475	630	880	650
n=	28	46	351	36	70	129	35

Table 2B. Effective Doses (μ Sv) estimated from DLP*

*conversion factors from Shrimpton PC et al. Effective dose and dose-length product in CT. *Radiology* 2009; 250; 604-605.

www.idtscans.com

Why Training is Important Some Popular Misconceptions:

- 1. If I can't see it in the images it didn't receive any dose FALSE
- 2. If the Field Of View is small then the dose must be low Effective Dose on a 4cm x 6cm can be up to 150µSv
- 3. Even if the Effective Dose is high, it's just a small region so the risk is low FALSE
- 4. If I can't see it in the images I don't have to report on it TRUE

Rogues Gallery

Moving patient to the side (without reducing the Field Of View) –

does it reduce the dose?

IDT27226

Accuitomo F170 14cm x 10cm 0.25mm voxels DAP 2170 mGy.cm2 DLP 81.8 mGy.cm Effective Dose 240µSv approx.

IDT29826

Gendex DP-700 4cm x 6cm 0.133mm voxels 79 mAs DLP 35.9 mGy.cm Effective Dose 150µSv approx.

Gendex DP-700 8cm x 6cm 0.2mm voxels 132.5 mAs DLP 58.5 mGy.cm Effective Dose 230µSv approx.

Toshiba Aquilion ONE 12cm x 6cm 0.25mm voxels DLP 54mGy.cm Effective Dose 150µSv approx.

IDT27563 i-CAT Classic 9.5cm x 5.4cm 0.25mm voxels DLP 13mGy.cm Effective Dose 50µSv approx.

Conclusions

- Effective Doses from Dental CBCT are not as low as they could be.
- QA is important to keep machines running optimally
- Training is important to give Operators a good understanding of how to monitor and reduce the dose.